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Abstract :  We study a sub-Poissonian and total noise in degenerate Eight-wave mixing process. We establish the analytic 

expression of first-order and second-order squeezing in terms of total noise under short-time approximation in degenerate six-

wave mixing process. It shows that higher-order squeezing allows a much larger fractional noise reduction than lower-order 

squeezing.  The photon statistics of the pump mode in the process is investigated and found to be sub-Poissonian in nature. The 

effect of sub-Poissonian nature of an optical field in terms of total noise is also incorporated. We show that the depth of 

nonclassicality directly depends on the amount of total noise present in the system. This suggests that the more squeezed the state 

is, the greater is its total noise in the system. 
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I. INTRODUCTION 

 

The Sub -Possonian were introduced by Hollenhorst and Caves [1, 2], but they accepted after Walls’ paper [3]. The first 

successful experiments on the generation and detection of squeezed states were reported in the middle of the 1980s [4–6]. Over 

the past decades, the squeezing [7-11] in quantized electro-magnetic fields has received a great deal of attention because of its 

wide applications in many branches of science and technology, especially for low noise fluctuation [12–14] with an application in 

high quality optical telecommunication [15], quantum cryptography [16, 17], and so on. A detailed review of squeezed states was 

presented by Dodonov et al. [18] and Anderson et al. [19]. The basic concept of squeezed light is the reduction of quantum 

fluctuations in one quadrature at the expense of increased fluctuations in other quadrature. It has been focused on theoretical as 

well as experimental interpretation in various nonlinear optical processes, such as harmonic generation [20, 21], multiphoton 

processes [22–25], Raman process [26–28], hyper-Raman process [29], Hong and Mandel [30, 31], Hillery [32–34] and Zhan [35] 

for improving the performance of optical devices in communication network. Squeezing and photon statistics of the field 

amplitude in various nonlinear optical processes has also been reported by Perina [36]. Higher-order sub-poissonian of light has 

also been studied by Kim and Yoon [37]. Recently, Prakash and Mishra [38, 39] have reported the higher-order sub-poissonian 

photon statistics and their detection. An idea of experimental detection of nth- amplitude squeezing has been proposed by Prakash 

and Yadav [40]. Schumaker [41] has been introduced the concept of total noise in a quantum state. Further, the notion of total 

noise in relation to squeezing of a field state has been given by Hillery [42] that reported about the measurement of the size of the 

field amplitude fluctuations of a state of the field. Furthermore, Gupta et.al [43] and Gill et.al [44] has also been stated that the 

squeezing and total noise present in quantum state can be adjusted by varying the phase angle. 

The chapter is organized for studying  sub-poissonian and total noise in degenerate Eight-wave mixing process as 

follows: Section 1.2 gives definition of sub-poissonian and total noise of a quantum field state. The higher-order squeezing and 

sub-poissonian behaviour of light in terms of total noise are also incorporated in this section. Finally, we conclude this chapter in 

Section 2.4.  

 

 

 

1.  Definition  sub-poissonian and total noise of a quantum field state  

The notion of total noise of quantum state for a single mode can be defined [42] in terms of the operators which corresponds to 

real and imaginary parts of the field amplitude respectively 
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where A≡ A(t) and A†≡ A†(t) are the varying operators. For a single mode of the field with frequency  and creation (annihilation) 

operators a†(a), they are given by 

)iexp()()(A and )iexp()(A(t) †† ttattta   . 

From equation (5.1), we find that 
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The total noise, which is measure of the total fluctuations of the amplitude, is  
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The uncertainty relation for X1 and X2 is  
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which gives the condition for total noise as 
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Similarly Amplitude –squared squeezing is exist if  
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The fact increased nonclassicality gives rise to increase in the total noise [42, 43], can be verified by associating total noise with 

higher-order squeezing.  

Using Hillery’s approach [42] to relate the total noise to the uncertainty relations for the quadrature variables as follows 
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From equation (5.12), it clears that for fixed
N

, the total noise must increase as 1Y decreases. Total noise (TN) increases in 

the quantum state and becomes more squeezed. Hence it may be considered for measuring the depth of nonclassicality. 

A state is sub-poissonian if  
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In order to relate number operator to the total noise of quantum state, let us use Schwartz inequality, 
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This implies that 

      
2

11
22

1 NNXXNX    2

,1
4

1
NX

2
2

4

1
X

                                                     (2.9) 

where 
  2,1 iXNX 

          

Similarly,  
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From equations (5.14) and (5.15), we have 
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Using equation (5.2) and simplify, we get 
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Therefore, the total noise in quantum state in terms of number operator is 
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From equation (2.13) it is clear that, the total noise must increase as 
 2N decreases. 

 

2.3 Sub-poissonian and total noise in fundamental mode in DSWM process 
The process in this model, involving absorption of three pump photons having frequency ω1 each and emission of two 

probe photons (stokes) with frequency ω2 each. The atomic system finally returns to ground state by emitting one signal photon of 

frequency ω3 as shown in Figure 5.1. 
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Figure 1: Degenerate Eight-wave interaction model [45] 

The Hamiltonian of this model is 
 1  
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where a†(a), b†(b) and c†(c) are the creation (annihilation) operators of A = a exp(i1t), B = b exp(i2t) and C = c exp(i3t), 

associated with  the relation  31= 22 + 33 respectively and g is the coupling constant between the two modes per second.  

The Heisenberg equation of motion for mode A is 
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Using (2.14) in (2.15), we obtain  
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Similarly, we obtain the relations for B and C as 
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Using Taylor’s series for expanding A(t) and retaining up to 
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The real quadrature component in fundamental mode A is given as 
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where   is the phase angle, with 

 ie
and 

 ie 
 

we assume quantum state as a product of coherent states |> for the fundamental mode A, |> for the Stokes mode B and 

vacuum state |0> for the mode C, 
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Further the total noise in this process can be measured as 
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The expression on the left-hand side of the above inequality reaches a minimum when
.
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For second-order squeezing, the real quadrature component of the fundamental mode is expressed as 
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Using equation (2.24) and then the number of photon in mode A may be expressed as 
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Subtracting (5.41) from (5.39), we get 
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Using condition (2.27), we obtain  
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Further the total noise in terms of second-order squeezing, 
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Equation (2,28), shows that for fixed
N

, the total noise must increase as 
  2tY

decreases.  
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Figure 2: Variation of Total noise 
 N  in quantum state with 
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The variation of second-order squeezing in terms of total noise with ||2 is shown in figure 2. For |β|2 = 0 corresponds to 

spontaneous process. The steady raise of the curves (figure 2) shows the total noise increases with increase of the number of 

photons (||2). It infers that the depth of nonclassicality directly depends on the large number of photons. This also suggests that 

the more squeezed the state is, the greater is its total noise.  

A comparison between figures shows greater total noise and hence greater squeezing in second-order than in first-order, 

having same number of photons.the maximum total noise is possible in higher-order (second-order) squeezing. It again infer that 

the more squeezed the state is, the greater is its total noise.  

Using (2.25) and (2.27), the sub-Poissonian photon statistics in the fundamental mode is 

           
  622

1
2

1 30)()( tgtNtN                                                                                                                     (2.30) 

For studying sub-Poissonian photon statistics behaviour, let us plot a sketch between Sn and ||2 as shown in figure 3.  

 

Figure 3: Variation of sub-poissonian states (Sn) with 
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The figure 2 show that the sub-poissonian statistics properties of light is directly proportional to the number of photons 

i.e. sub-poissonian statistics of light increases with increasing ||2. Thus, the degree of sub-poissonian photon statistics is also 

associated with large number of photons.  

Hence, the total noise related to number operator, 
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From above equation (2.30), it is evident that for fixed 
N

as
  2tN decreases, then NT

must increases. The variation of 

total noise in terms of number operator (TN)n with ||2 is shown in figure 4. The steady raise of the curve (figure 3) shows the total 

noise increases with increase of the number of photons ||2. Therefore, as state becomes more sub-poissonian 
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Figure 4: Variation of Total noise 
 nN in sub-poissonian state with
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2.4 CONCLUSIONS 

In this chapter  It is shown  that greater total noise and hence greater squeezing exist in second-order than in first-order, 

having same number of photons. The result agrees with the result of Hillery [42]. Hence the maximum total noise is possible in 

higher-order squeezing. It is inferred that the more squeezed the state is, the greater is its total noise in the system. It is also found 

that total noise increases in the quantum state and becomes more squeezed state. Hence it may be considered for measuring the 

depth of nonclassicality of any quantum state.  

It is shown that the sub-poissonian statistical properties of light is directly proportional to number of photons of the 

fundamental mode i.e. sub-poissonian states of light increases with increasing ||2. It is found that the total noise increases with 

increase of the number of photons ||2. Therefore, as state becomes more sub-poissonian and its total noise increases. 

 These results suggest that the desired degree of squeezing, sub-poissonian and total noise can be obtained by using short 

interaction time and number of photons present in the radiation field before interaction in the system. Hence, the total noise of a 

quantum state can be measured the depth of nonclassicality i.e. more nonclassical a state (squeezing and sub-poissonian) of the 

field in any system.  
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